Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257502

RESUMEN

A Global Navigation Satellite System (GNSS) is widely used today for both positioning and timing purposes. Many distinct receiver chips are available as Application-Specific Integrated Circuit (ASIC)s off-the-shelf, each tailored to the requirements of various applications. These chips deliver good performance and low energy consumption but offer customers little-to-no transparency about their internal features. This prevents modification, research in GNSS processing chain enhancement (e.g., application of Approximate Computing (AxC) techniques), and design space exploration to find the optimal receiver for a use case. In this paper, we review the GNSS processing chain using SyDR, our open-source GNSS Software-Defined Radio (SDR) designed for algorithm benchmarking, and highlight the limitations of a software-only environment. In return, we propose an evolution to our system, called Hard SyDR to become closer to the hardware layer and access new Key Performance Indicator (KPI)s, such as power/energy consumption and resource utilization. We use High-Level Synthesis (HLS) and the PYNQ platform to ease our development process and provide an overview of their advantages/limitations in our project. Finally, we evaluate the foreseen developments, including how this work can serve as the foundation for an exploration of AxC techniques in future low-power GNSS receivers.

2.
Faraday Discuss ; 250(0): 202-219, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37961853

RESUMEN

The exponential effort in the design of hole-transporting materials (HTMs) during the last decade has been motivated by their key role as p-type semiconductors for (opto)electronics. Although structure-property relationships have been successfully rationalized to decipher optimal site substitutions, aliphatic chain lengths or efficient aromatic cores for enhanced charge conduction, the impact of molecular shape, material morphology and dynamic disorder has been generally overlooked. In this work, we characterize by means of a multi-level theoretical approach the charge transport properties of a novel planar small-molecule HTM based on the indoloindole aromatic core (IDIDF), and compare it with spherical spiro-OMeTAD. Hybrid DFT calculations predict moderate band dispersions in IDIDF associated to the main transport direction characterized by π-π stacked molecules, both between the indoloindole cores and the thiophene groups. Strongly coupled dimers show relevant non-covalent interactions (NCI), indicating that NCI surfaces are a necessary but not exclusive requirement for large electronic couplings. We evidence remarkable differences in the site energy standard deviation and electronic coupling distributions between the conduction paths of IDIDF and spiro-OMeTAD. Despite the spherical vs. planar shape, theoretical calculations predict in the static crystal strong direction-dependent charge transport in the two HTMs, with ca. one-order-of-magnitude higher mobility (µ) for IDIDF. The dynamical disorder promoted by finite temperature effects in the crystal leads to a reduction in the hole transport properties in both HTMs, with maximum µ values of 2.42 and 4.2 × 10-2 cm2 V-1 s-1 for IDIDF and spiro-OMeTAD, respectively, as well as a significant increase in the transport anisotropy in the latter. Finally, the impact of the material amorphousness in the hole mobility is analysed by modelling a fully random distribution of HTM molecules. An average (lower-bound) mobility of 1.1 × 10-3 and 4.9 × 10-5 cm2 V-1 s-1 is predicted for planar IDIDF and spherical spiro-OMeTAD, respectively, in good accord with the experimental data registered in thin-film devices. Our results demonstrate the strong influence of molecular shape, dynamic structural fluctuations and crystal morphology on the charge transport, and pose indoloindole-based HTMs as promising materials for organic electronics and photovoltaics.

3.
Front Chem ; 11: 1292541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025083

RESUMEN

Donor-acceptor-substituted biphenyl derivatives are particularly interesting model compounds, which exhibit intramolecular charge transfer because of the extent of charge transfer between both substituents. The connection of a 4-[1,1'-biphenyl]-4-yl-2-pyrimidinyl) moiety to differently disubstituted amino groups at the biphenyl terminal can offer push-pull compounds with distinctive photophysical properties. Herein, we report a comprehensive study of the influence of the torsion angle of the disubstituted amino group on the emissive properties of two pull-push systems: 4-[4-(4-N,N-dimethylaminophenyl)phenyl]-2,6-diphenylpyrimidine (D1) and 4-[4-(4-N,N-diphenylaminophenyl)phenyl]-2,6-diphenylpyrimidine (D2). The torsion angle of the disubstituted amino group, either N,N-dimethyl-amine or N,N-diphenyl-amine, at the biphenyl end governs their emissive properties. A drastic fluorescence quenching occurs in D1 as the solvent polarity increases, whereas D2 maintains its emission independently of the solvent polarity. Theoretical calculations on D1 support the presence of a twisted geometry for the lowest energy, charge-transfer excited state (S1,90), which corresponds to the minimum energy structure in polar solvents and presents a small energy barrier to move from the excited to the ground state, thereby favoring the non-radiative pathway and reducing the fluorescence efficiency. In contrast, this twisted structure is absent in D2 due to the steric hindrance of the phenyl groups attached to the amine group, making the non-radiative decay less favorable. Our findings provide insights into the crucial role of the substituent in the donor moiety of donor-acceptor systems on both the singlet excited state and the intramolecular charge-transfer process.

4.
J Am Chem Soc ; 145(42): 23249-23256, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37813379

RESUMEN

Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.

5.
Chem Sci ; 14(36): 9900-9909, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736635

RESUMEN

The synthesis and self-assembling features of the N-annulated perylene diimide (NPBI) 1 in different solvents are reported. Compound 1 possesses two chiral linkers, derived from (S)-(+)-alaninol, that connect the central aromatic NPBI segment and the peripheral trialkoxybenzamide units. The Ala-based linker has been demonstrated to strongly favor the formation of intramolecularly H-bonded seven-membered pseudocycles. NPBI 1 shows a strong tendency to self-assemble even in a good solvent like CHCl3 and the formation of chiral dimers is detected in this good solvent. Both experimental techniques and theoretical calculations reveal that the intramolecular H-bonded pseudocycles are very robust and the formation of chiral dimers is driven by the π-stacking of two units of the NPBI core. Unexpectedly, an efficient transfer of the asymmetry of the point chirality at the linker to the aromatic moiety is observed in the molecularly dissolved state. Changing the solvent to more apolar methylcyclohexane modifies the self-assembly process and the formation of chiral supramolecular polymers is detected. The supramolecular polymerization of 1 is demonstrated to follow an isodesmic mechanism unlike previous referable systems. In the formation of the supramolecular polymers of 1, the combination of experimental and computational data indicates that the H-bonded pseudocycles are also present in the aggregated state and the rope-like, columnar aggregates formed by the self-assembly of 1 rely on the π-stacking of the NPBI backbones.

6.
Chem Sci ; 14(37): 10112-10120, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37772123

RESUMEN

Despite their great potential as molecular building blocks for organic synthesis, tetrabromo-p-quinodimethanes (TBQs) are a relatively unknown family of compounds. Herein, we showcase a series of five derivatives incorporating two tetrabromo-anthraquinodimethane (TBAQ) units linked by π-conjugated spacers of different nature and length. The resulting dimers TBQ1-5 are fully characterised by means of thorough spectroscopic measurements and theoretical calculations. Interestingly, owing to the steric hindrance imposed by the four bulky bromine atoms, the TBAQ fragments adopt a characteristically warped geometry, somehow resemblant of a butterfly, and the novel dimers show a complex NMR pattern with signal splittings. To ascertain whether dynamic processes regarding fluxional inversion of the butterfly configurations are involved, first-principles calculations assessing the interconversion energy barriers are performed. Three possible stereoisomers are predicted involving two diastereomers, thus accounting for the observed NMR spectra. The rotational freedom of the TBAQ units around the π-conjugated linker influences the structural and electronic properties of TBQ1-5 and modulates the electronic communication between the terminal TBAQ moieties. The role of the linker on the electronic properties is investigated by Raman and UV-vis spectroscopies, theoretical calculations and UV-vis measurements at low temperature. TBQ1-5 are of interest as less-explored structural building precursors for a variety of scientific areas. Finally, the sublimation, self-assembly and reactivity on Au(111) of TBQ3 is assessed.

7.
J Am Chem Soc ; 145(35): 19243-19255, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37585687

RESUMEN

Polyethylene terephthalate (PET) is the most abundant polyester plastic, widely used in textiles and packaging, but, unfortunately, it is also one of the most discarded plastics after one use. In the last years, the enzymatic biodegradation of PET has sparked great interest owing to the discovery and subsequent mutation of PETase-like enzymes, able to depolymerize PET. FAST-PETase is one of the best enzymes hitherto proposed to efficiently degrade PET, although the origin of its efficiency is not completely clear. To understand the molecular origin of its enhanced catalytic activity, we have carried out a thorough computational study of PET degradation by the FAST-PETase action by employing classical and hybrid (QM/MM) molecular dynamics (MD) simulations. Our findings show that the rate-limiting reaction step for FAST-PETase corresponds to the acylation stage with an estimated free energy barrier of 12.1 kcal mol-1, which is significantly smaller than that calculated for PETase (16.5 kcal mol-1) and, therefore, supports the enhanced catalytic activity of FAST-PETase. The origin of this enhancement is mainly attributed to the N233K mutation, which, although sited relatively far from the active site, induces a chain folding where the Asp206 of the catalytic triad is located, impeding that this residue sets effective H-bonds with its neighboring residues. This effect makes Asp206 hold a more basic character compared to the wild-type PETase and boosts the interaction with the protonated His237 of the catalytic triad in the transition state of acylation, with the consequent decrease of the catalytic barrier and acceleration of the PET degradation reaction.

8.
Dalton Trans ; 52(30): 10437-10447, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439188

RESUMEN

In the present contribution, the following three cyclometallated Ir(III) complexes were theoretically investigated using density functional theory calculations to explain their different photophysical properties: [Ir(ppy)2(bpy)]+, where Hppy is 2-phenylpyridine and bpy is 2,2'-bipyridine, [Ir(ppy)2(pbpy)]+, where pbpy is 6-phenyl-2,2'-bipyridine, and [Ir(ppy)2(dpbpy)]+, where dpbpy is 6,6'-diphenyl-2,2'-bipyridine. Despite sharing the same molecular skeleton, with the only difference being the addition of one or two phenyl groups attached to the ancillary bpy ligand, the complexes show different emission quantum yields in CH2Cl2 solution (0.196, 0.049 and 0.036, respectively). Such a behavior was previously justified as a consequence of a different ability to non-radiatively decay through an axial metal-centered (MC) triplet state. In the present contribution, a new non-radiative decay path has been characterized to be mediated by the so-called equatorial MC states, in which an Ir-Nbpy bond is elongated instead of an Ir-Nppy bond as observed in the axial MC states. The decay path involving the equatorial MC states is more favorable than that associated with the axial MC states, and the different ability to decay through the former better explains the photoemission properties exhibited by the three complexes.

9.
Inorg Chem ; 62(20): 7834-7842, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37156094

RESUMEN

The incorporation of electroactive organic building blocks into coordination polymers (CPs) and metal-organic frameworks (MOFs) offers a promising approach for adding electronic functionalities such as redox activity, electrical conductivity, and luminescence to these materials. The incorporation of perylene moieties into CPs is, in particular, of great interest due to its potential to introduce both luminescence and redox properties. Herein, we present an innovative synthesis method for producing a family of highly crystalline and stable coordination polymers based on perylene-3,4,9,10-tetracarboxylate (PTC) and various transition metals (TMs = Co, Ni, and Zn) with an isostructural framework. The crystal structure of the PTC-TM CPs, obtained through powder X-ray diffraction and Rietveld refinement, provides valuable insights into the composition and organization of the building blocks within the CP. The perylene moieties are arranged in a herringbone pattern, with short distances between adjacent ligands, which contributes to the dense and highly organized framework of the material. The photophysical properties of PTC-Zn were thoroughly studied, revealing the presence of J-aggregation-based and monomer-like emission bands. These bands were experimentally identified, and their behavior was further understood through the use of quantum-chemical calculations. Solid-state cyclic voltammetry experiments on PTC-TMs showed that the perylene redox properties are maintained within the CP framework. This study presents a simple and effective approach for synthesizing highly stable and crystalline perylene-based CPs with tunable optical and electrochemical properties in the solid state.

10.
Angew Chem Int Ed Engl ; 61(47): e202213345, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36178740

RESUMEN

Hydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition. Spectroscopic and theoretical studies reveal that these transitions are triggered by the molecular reorganization of the SQ units changing from slipped to head-to-tail hydrogen bonding patterns. This work unveils the thermodynamic and kinetic aspects of reversible polymorph transitions that are of interest to develop stimuli-responsive systems.


Asunto(s)
Hidrógeno , Polímeros , Enlace de Hidrógeno , Polímeros/química , Cinética
11.
J Phys Chem C Nanomater Interfaces ; 126(31): 13053-13061, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35983311

RESUMEN

We have created a dataset of 269 perovskite solar cells, containing information about their perovskite family, cell architecture, and multiple hole-transporting materials features, including fingerprints, additives, and structural and electronic features. We propose a predictive machine learning model that is trained on these data and can be used to screen possible candidate hole-transporting materials. Our approach allows us to predict the performance of perovskite solar cells with reasonable accuracy and is able to successfully identify most of the top-performing and lowest-performing hole-transporting materials in the dataset. We discuss the effect of data biases on the distribution of perovskite families/architectures on the model's accuracy and offer an analysis with a subset of the data to accurately study the effect of the hole-transporting material on the solar cell performance. Finally, we discuss some chemical fragments, like arylamine and aryloxy groups, which present a relatively large positive correlation with the efficiency of the cell, whereas other groups, like thiophene groups, display a negative correlation with power conversion efficiency (PCE).

12.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35808413

RESUMEN

Precision spraying relies on the response of the spraying equipment to the features of the targeted canopy. PWM technology manages the flow rate using a set of electronically actuated solenoid valves to regulate flow rate at the nozzle level. Previous studies have found that PWM systems may deliver incorrect flow rates. The objective of the present study was to characterize the performance of a commercial blast sprayer modified with pulse-width-modulated nozzles under laboratory conditions, as a preliminary step before its further field validation. Four different duty cycles (25 percent, 50 percent, 75 percent and 100 percent) and four different pressures (400 kPa, 500 kPa, 600 kPa and 700 kPa) were combined to experimentally measure the flow rate of each nozzle. Results showed that the PWM nozzles mounted in the commercial blast sprayer, under static conditions, were capable of modulating flow rate according to the duty cycle. However, the reduction of flow rates for the tested duty cycles according to pressure was lower than the percentage expected. A good linear relation was found between the pressure registered by the control system feedback sensor and the pressure measured by a reference conventional manometer located after the pump. High-speed video recordings confirmed the accurate opening and closing of the nozzles according to the duty cycle; however, substantial pressure variations were found at nozzle level. Further research to establish the general suitability of PWM systems for regulating nozzle flow rates in blast sprayers without modifying the system pressure still remains to be addressed.

13.
J Am Chem Soc ; 144(20): 9074-9082, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575688

RESUMEN

Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas MUV-21 collapses during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption capacity of 1.91 and 1.71 mmol g-1, respectively, at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively charged TTF core and a negatively charged carboxylate group. First-principles calculations predict the emergence of remarkable charge transport by means of a through-space hopping mechanism fostered by an efficient TTF π-π stacking and the spontaneous formation of persistent charge carriers in the form of radical TTF•+ units. Transport measurements confirm the efficient charge transport in zwitterionic MUV-20a and MUV-20b with no need for postsynthetic treatment (e.g., electrochemical oxidation or doping), demonstrating the semiconductor nature of these HOFs with record experimental conductivities of 6.07 × 10-7 (MUV-20a) and 1.35 × 10-6 S cm-1 (MUV-20b).

14.
J Phys Chem A ; 125(46): 9982-9994, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34767714

RESUMEN

The kinetics of the nonradiative photoinduced processes (charge-separation and charge-recombination) experimented in solution by a supramolecular complex formed by an electron-donating bowl-shaped truxene-tetrathiafulvalene (truxTTF) derivative and an electron-accepting fullerene fragment (hemifullerene, C30H12) has been theoretically investigated. The truxTTF·C30H12 heterodimer shows a complex decay mechanism after photoexcitation with the participation of several low-lying excited states of different nature (local and charge-transfer excitations) all close in energy. In this scenario, the absolute rate constants for all of the plausible charge-separation (CS) and charge-recombination (CR) channels have been successfully estimated using the Marcus-Levich-Jortner (MLJ) rate expression, electronic structure calculations, and a multistate diabatization method. The outcomes suggest that for a reasonable estimate of the CS and CR rate constants, it is necessary to include the following: (i) optimally tuned long-range (LC) corrected density functionals, to predict a correct energy ordering of the low-lying excited states; (ii) multistate effects, to account for the electronic couplings; and (iii) environmental solvent effects, to provide a proper stabilization of the charge-transfer excited states and accurate external reorganization energies. The predicted rate constants have been incorporated in a simple but insightful kinetic model that allows estimating global CS and CR rate constants in line with the most generalized three-state model used for the CS and CR processes. The values computed for the global CS and CR rates of the donor-acceptor truxTTF·C30H12 supramolecular complex are found to be in good agreement with the experimental values.

15.
Inorg Chem ; 60(17): 13222-13232, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492762

RESUMEN

The photophysical behavior of the cyclometalating Ir(III) complexes [Ir(ppy)2(bpy)]+, where Hppy is 2-phenylpyridine and bpy is 2,2'-bipyridine (complex 1), and [Ir(diFppy)2(dtb-bpy)]+, where diFppy is 2-(2,4-difluorophenyl)pyridine and dtb-bpy is 4,4'-di-tert-butyl-2,2'-bipyridine (complex 2), has been theoretically investigated by performing density functional theory calculations. The two complexes share the same molecular skeleton, complex 2 being derived from complex 1 through the addition of fluoro and tert-butyl substituents, but present notable differences in their photophysical properties. The remarkable difference in their emission quantum yields (0.196 for complex 1 in dichloromethane and 0.71 for complex 2 in acetonitrile) has been evaluated by characterizing both radiative and nonradiative decay paths. It has emerged that the probability of decaying through the nonradiative triplet metal-centered state, normally associated with the loss of the emission quantum yield, does not appear to be the reason behind the reported substantially different emission efficiency. A more critical factor appears to be the ability of complex 2 to emit from both the usual metal-to-ligand charge-transfer state and from two additional ligand-centered states, as supported by the fact that the respective minima belong to the potential energy surface of the lowest triplet T1 state and that their phosphorescence lifetimes are in the same order of magnitude. In contrast, the emission of complex 1 can be originated only from the metal-to-ligand charge-transfer state, being the only emissive T1 minimum. The results constitute a significant case in which the emission from ligand-centered states is the key for determining the high emission quantum yield of a complex.

16.
J Am Chem Soc ; 143(33): 13281-13291, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34378925

RESUMEN

The synthesis of two series of N-annulated perylene bisimides (PBIs), compounds 1 and 2, is reported, and their self-assembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds 1, with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties. The lack of clear helicity, due to the staircase arrangement of the self-assembling units in the aggregate, justifies these features. In contrast, attaching the peripheral groups directly to the N-annulated PBI core drastically changes the self-assembling properties of compounds 2, which form H-type aggregates following an isodesmic mechanism. These H-type aggregates show a strong aggregation-caused quenching (ACQ) effect that leads to nonemissive aggregates. Chiral (S)-2 and (R)-2 experience an efficient transfer of asymmetry to afford P- and M-type aggregates, respectively, although no amplification of asymmetry is achieved in majority rules or "sergeants-and-soldiers" experiments. A solvent-controlled stereomutation is observed for chiral (S)-2 and (R)-2, which form helical supramolecular polymers of different handedness depending on the solvent (methylcyclohexane or toluene). The stereomutation is accounted for by considering the two possible conformations of the terminal phenyl groups, eclipsed or staggered, which lead to linear or helical self-assemblies, respectively, with different relative stabilities depending on the solvent.

17.
Chempluschem ; 86(7): 1006-1013, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34260160

RESUMEN

Two novel and simple donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) containing two units of the p-methoxytriphenylamine (TPA) electron donor group covalently bridged by means of the 3,4-dimethoxyselenophene spacer through single and triple bonds are reported. The optoelectronic and thermal properties of the new selenium-containing HTMs have been determined using standard experimental techniques and theoretical density functional theory (DFT) calculations. The selenium-based HTMs have been incorporated in mesoporous perovskite solar cells (PSCs) in combination with the triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 . Limited values of power conversion efficiencies, up to 13.4 %, in comparison with the archetype spiro-OMeTAD (17.8 %), were obtained. The reduced efficiencies showed by the new HTMs are attributed to their poor film-forming ability, which constrains their photovoltaic performance due to the appearance of structural defects (pinholes).

18.
J Am Chem Soc ; 143(29): 11199-11208, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34260220

RESUMEN

Functional materials composed of spontaneously self-assembled electron donor and acceptor entities capable of generating long-lived charge-separated states upon photoillumination are in great demand as they are key in building the next generation of light energy harvesting devices. However, creating such well-defined architectures is challenging due to the intricate molecular design, multistep synthesis, and issues associated in demonstrating long-lived electron transfer. In this study, we have accomplished these tasks and report the synthesis of a new fullerene-bis-Zn-porphyrin e-bisadduct by tether-directed functionalization of C60 via a multistep synthetic protocol. Supramolecular oligomers were subsequently formed involving the two porphyrin-bearing arms embracing a fullerene cage of the vicinal molecule as confirmed by MALDI-TOF spectrometry and variable temperature NMR. In addition, the initially formed worm-like oligomers are shown to evolve to generate donut-like aggregates by AFM monitoring that was also supported by theoretical calculations. The final supramolecular donuts revealed an inner cavity size estimated as 23 nm, close to that observed in photosynthetic antenna systems. Upon systematic spectral, computational, and electrochemical studies, an energy level diagram was established to visualize the thermodynamic feasibility of electron transfer in these donor-acceptor constructs. Subsequently, transient pump-probe spectral studies covering the wide femtosecond-to-millisecond time scale were performed to confirm the formation of long-lived charge-separated states. The lifetime of the final charge-separated state was about 40 µs, thus highlighting the significance of the current approach of building giant self-organized donor-acceptor assemblies for light energy harvesting applications.

19.
ACS Appl Mater Interfaces ; 13(24): 28214-28221, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105947

RESUMEN

A decade after the report of the first efficient perovskite-based solar cell, development of novel hole-transporting materials (HTMs) is still one of the main topics in this research field. Two of the main advance vectors of this topic lie in obtaining materials with enhanced hole-extracting capability and in easing their synthetic cost. The use of anthra[1,9-bc:5,10-b'c']dithiophene (ADT) as a flat π-conjugated frame for bearing arylamine electroactive moieties allows obtaining two novel highly efficient HTMs from very cheap precursors. The solar cells fabricated making use of the mixed composition (FAPbI3)0.85(MAPbBr3)0.15 perovskite and the novel ADT-based HTMs show power conversion efficiencies up to 17.6% under 1 sun illumination compared to the 18.1% observed when using the benchmark compound 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). Detailed density functional theory calculations allow rationalization of the observed opto-electrochemical properties and predict a flat molecular structure with a low reorganization energy that supports the high conductivity measured for the best-performing HTM.

20.
J Phys Chem Lett ; 12(26): 6159-6164, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184906

RESUMEN

Two redox and magnetically active perchlorotriphenylmethyl (•PTM) radical units have been connected as end-capping groups to a bis(phenylene)diyne chain through vinylene linkers. Negative and positive charged species have been generated, and the influence of the bridge on their stabilization is discussed. Partial reduction of the electron-withdrawing •PTM radicals results in a class-II mixed-valence system with the negative charge located on the terminal PTM units, proving the efficiency of the conjugated chain for the electron transport between the two terminal sites. Counterintuitively, the oxidation process does not occur along the electron-rich bridge but on the vinylene units. The •PTM radicals play a key role in the stabilization of the cationic species, promoting the generation of quinoidal ring segments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...